
Robust Task-Based Grasping as a Service

Jingyi Song1, Ajay Tanwani1, Jeffrey Ichnowski1, Michael Danielczuk1, Kate Sanders1, Jackson Chui1,
Juan A. Ojea2, Ken Goldberg1

Abstract— Robot grasping for automation must be robust to
the inherent uncertainty in perception, control, and physical
properties such as friction. Computing robust grasp points
on a given object is even more challenging when there are
constraints due to a task intended to be performed with the
object, for example in assembly, packing, and/or tool use. To
compute grasps that robustly achieve task requirements, we
designed an intuitive user interface that takes an object mesh
as input and displays it, allowing non-specialists to indicate
“stay-out” zones by painting facets of the mesh and to indicate
desired forces and torques by drawing vectors. The interface
then sends this specification to our server which computes
resulting grasps and send them back to the client where the
resulting parallel-jaw grasp axes are displayed color-coded by
robustness. We implemented this interface in the cloud-based
“Dex-Net as a Service - Task (DNaaS - Task)” system that runs
on any browser and reports examples. The system is available
at: https://dex-net.app

I. INTRODUCTION

Most robot grasping algorithms aim to optimize resistance
to gravity so as to optimize successful lifting, but many
automation applications such as assembly, packing, and tool
use require “task-based” constraints on robot grasping. These
can include limits on where a given object can be touched so
that delicate surfaces such as lenses and high-gloss finishes
are not scratched, or requirements for the robot grasp to resist
forces to be applied to the object beyond gravity, such as
desired insertion forces to achieve packing or assembly, or
torques needed to screw or twist an object.

As a result, grasping algorithms must also take into
account the task to be performed as well as object geometry.
As it can be challenging to specify the task, we present
a novel and intuitive user interface that takes an object
mesh as input and displays it, allowing non-specialists to
indicate “stay-out” zones by painting facets of the mesh and
to indicate desired forces and torques to apply by drawing
vectors. The system then computes and displays associated
parallel-jaw grasp axes color-coded by robustness. We report
on an implemented version of this interface and examples.

This paper makes three contributions:
1) An intuitive “task-based” grasping user interface that

takes as input a 3D object mesh and allows non-
specialists to indicate task constraints with “stay-out”
zones and desired wrenches.

2) A modification of the Dex-Net 1.0 algorithm to compute
robust grasps that meet these task-based constraints with
wrench resistance metric.
1University of California, Berkeley. {jingyi song,

ajay.tanwani}@berkeley.edu
2Siemens Corporation. juan.aparicio@siemens.com

no task stay-out zone stay-out zone+wrench

Fig. 1: Task-directed grasping results for a tweezer object. The
top row shows the object mesh, without constraints (left), with stay-
out zones in red (middle), and with a desired applied force in blue
(right). The bottom row shows computed parallel-jaw grasps for
each case; each grasp axis is displayed as a color-coded “whisker”
corresponding to its robustness to the constraints and perturbations.

3) A web-based implementation of robust task-based
grasping as a service.

II. RELATED WORK

Research into task-based grasping has explored various
formulations of the problem and approaches. In this section,
we present this prior research categorized into task-directed
grasping, followed by data-driven strategies to learn the task-
based grasping strategies.

A. Task-Directed Grasping

Grasping diversely shaped and sized novel objects has
a wide range of applications in industrial and consumer
markets. Grasping is often subdivided across grasp synthesis
and grasp quality evaluation. Grasp synthesis generates grasp
candidates from contact locations, while grasp optimiza-
tion evaluates the quality of candidate grasps subject to
criteria such as force closure or wrench resistance [14,
20]. As force closure is a more conservative metric and

https://dex-net.app

guarantees resistance to wrench in any direction, we use
wrench resistance to quantify the ability of a grasp to resist
disturbances along certain directions that specify the task.
Li and Sastry [9], Prats et al. [18] and Haschke et al. [4]
also investigate task-oriented grasping strategies using an
external task wrench. Ortenzi et al. [15] advocate the need of
a task oriented metric for goal-directed robot manipulation
in addition to stability and mean picks per hour.

In addition to grasp analysis, recent work has also fo-
cused on using information about the planned trajectory
to plan grasps. Mavrakis et al. [12] use reasoning about
robot kinematics after grasping to select grasp contact points
and later minimize the work of the resulting trajectory by
choosing from a set of possible grasps [13]. Pardi et al.
[16] focus on choosing grasps that will lead to collision-
free trajectories during the proceeding manipulation task.
Similarly, Zimmermann et al. [24] simultaneously optimize
grasp and motion planning to perform pick-and-place and
handover tasks as part of an assembly pipeline. However,
each of these papers only considers a task where the robot
must execute a trajectory after grasping, and do not consider
external wrenches that must be resisted by the grasp as part
of the task (see [20] for more details). Holladay et al. [5]
present a planner for robot tasks that require motions and
forces with tool-use as an example application.

B. Learning Grasping Strategies

Song et al. [21] presented a task-directed grasping model
taking into account task, action and object information in the
Bayesian setting. Kokic et al. [7] use CNN’s for learning
object affordances, class and object orientation to specify
grasp constraints for task-based grasping. Recently, the au-
thors proposed to predict a suitable task-specific grasping
region by taking an object point cloud as input, where
the hand-object pose labels are learned from human-activity
datasets [6]. Fang et al. [3] propose Task-Oriented Grasping
Network (TOG-Net) that uses self-supervision to jointly op-
timize both the task-based grasp and the manipulation policy
for a tool. Qin et al. [19] propose learning keypoints of tools,
such as grasp point and effect point, through self-supervision
of tasks and using point-cloud observations. Pas et al. [17]
detect graspable object parts from 3D point clouds. Zhirong
Wu et al. [23] use a volumetric representation to study the 3D
representation of objects. Xu et al. [22] propose a learning-
based approach to separately assess the stability of grasps
for several sub-tasks.

In this work, we synthesize grasp locations based on the
stay-out zones, and evaluate the grasp quality with respect to
a given direction in which task wrench is applied to satisfy
the task. We extend the work in [8] to provide robust task-
based grasping as a service for public use.

III. PROBLEM FORMULATION

Given a 3D mesh, represented by a set of faces and vertices
M, and a task that requires the application of a wrench
τ , we define a semantic task-based grasping model m as a
combination of τ and the stay-out zone Mout ⊂ M. Then,

given a model m, we identify a set of grasp candidates
G. Each grasp candidate g ∈ G, defined by a center and
grasp axis, has contact points entirely contained in MC

out,
the complement of Mout, and has an associated quality
r ∈ [0, 1] that measures the ability of g to robustly resist
the task wrench τ under perturbations. Here, r reflects the
relative ability of g to complete the task for the given object.
Higher values of r reflect robustness to perturbations in the
task wrench.

A. System Design Considerations

In this section, we review design considerations for a
robust task-based grasping model, analysis, system, and user
interface.

Objects and tools used in everyday life are well under-
stood by their users, and often by the general population.
Studies [1, 2] have shown that humans are capable of
identifying the suitable grasps for specific tasks. We propose
the following design considerations:

a) Objects may be used for more than one task: As
such the best grasp for an object will be dependent on the
task the robot will perform.

b) Availability of meshes: Meshes for many objects
are readily available in online repositories such as Thingi-
verse [11]. Manufactures of newly designed objects are also
likely to have meshes from the design and manufacturing
process.

c) Leverage human knowledge: Objects designed for
use by humans have a wealth of history and knowledge about
the wrenches and surfaces needed for a task.

d) Model usable by algorithms: The semantic task-
based model should be both intuitive to humans and usable
by grasp-analysis algorithms.

IV. TASK-BASED GRASPING SYSTEM

This section describes a proposed robust-task based grasp-
ing system consisting of three parts: 1) stay-out zones and
desired forces and torques that define the semantics of a task-
based grasp, 2) an informed sampling-based algorithm that
uses the grasp zones to perform grasp analysis and generate
a ranked set of candidate grasps, and 3) a cloud-based
web interface for defining task-specific grasping models for
objects.

A. Semantic Task-Based Grasp Model

To represent a semantic task-based grasp model we use
a mesh augmented with a stay-out zone and an external
wrench. The mesh, as a representation of the surface, fa-
cilitates grasp analysis based on sampled points and area-
contact models. Stay-out zones prevent contacts that hinder
or prevent the task. The wrench specification defines wrench
resistance to perform the task. An example of this model is
shown in Figure 1 with stay-out zones painted in red and
task wrench (force vector) with a blue arrow.

Algorithm 1 Task-Based Grasp Analysis

Require: A mesh M, A stay-out region Mout ⊂ M, and
a task wrench τ

1: Gsamples ← ∅
2: while |Gsamples| < nsamples and not max iterations do
3: p0 ← randomly sample point on M
4: p1 ← shoot ray from p0 within friction cone until

intersection with M
5: g ←

(
1
2 (p0 + p1), (p1 − p0)/‖p1 − p0‖

)
6: if gripper at g not in collision with M

and gripper wide enough for g
and {p0, p1} ∪Mout = ∅ then

7: Gsamples ← Gsamples ∪ {g}
8: Ganalysis ← ∅
9: for all g ∈ Gsamples do {Compute grasp quality}

10: r ← 0
11: for i← 1, . . . , np do
12: gi ← random perturbation of g
13: if gi not in collision and resists τ then
14: r ← r + 1/np
15: Ganalysis ← Ganalysis ∪ {(g, r)}
16: return Ganalysis

B. Task-Based Grasp Analysis Algorithm

To perform a task-based grasp analysis on an object and
identify candidate grasps for a task, we propose a modifica-
tion to the Dex-Net 1.0 grasp planning algorithm in Mahler
et al. [10] for computing analytical grasps on meshes. An
overview of the algorithm is shown in Algorithm 1. The
algorithm takes the stay-out zones and external wrench on
an object mesh as input, and generates a set of grasps along
with associated quality scores. The grasps in the output avoid
the stay-out zones. The associated quality score reflects the
robustness of the grasp in the range [0, 1] indicating how
robustly the gripper is robust to perturbations while resisting
the external task’s wrench, with 0 indicating the grasp will
fail to complete the task, 1 indicating the grasp is highly
likely to complete the task, and values between proportion-
ally representing the likelihood of successful completion.

The algorithm operates by sampling candidate contact
points on the object mesh. Points falling within the stay-
out zone are discarded. We shoot rays from the sampled
candidate contact points in random directions within the
friction cone until they intersect with the object mesh to
create antipodal contact point pairs. From the points, a grasp
candidate g is constructed by taking the center of these
points and computing the grasp axis as the vector between
the points. We then prune these grasp candidates by: 1) the
maximum width of the parallel-jaw gripper, and 2) collisions
with the gripper. We continue to iteratively sample grasp
candidates until we obtain the desired number of grasp
candidates or we reach a fixed maximum number of sampling
iterations.

The algorithm subsequently evaluates grasp candidates
based on their robustness to perturbations in resisting the

Fig. 2: Dex-Net as a Service - Task (DNaaS-Task) online user
interface. The column on the right includes numerical inputs,
including settings on grasp filter, gripper width, stay-out zone
selection, point of application and magnitude for force, orientation
and magnitude for torque. On the left is the object mesh where stay-
out zones can be painted and wrenches indicated. Also, this is where
resulting grasps are displayed after computation. The figure shows
the most robust grasps (in green) for the screw driver for the applied
screw driving task, where the tip of the screw driver is masked as
the stay out zone and a 0.5 Nm clockwise torque is desired. The
online interface is available at: https://dex-net.app

specified external wrench. For each grasp candidate, we
generate np perturbations of the grasp parameters by adding
Gaussian noise to the translation and rotation of the grasp
center point and axis, respectively. We then analyze each of
the grasp candidate perturbations to determine if it can resist
the external task wrench. Mathematically,

r =
1

np

np∑
i=0

I(min
ξi

‖Giξi − τ o‖2 < ε)

s.t. Aξi ≤ h

gi = g +N (0,Σ)

gi /∈ Mout

where Gi ∈ R6×n is the grasp matrix that transforms the
contact wrenches ξi ∈ Rn corresponding to the perturbed
grasp gi into object frame, τ o ∈ R6 is the external wrench
transformed into the object frame, ε > 0 is a small positive
number, N (0,Σ) denotes the multivariate distribution from
where the perturbation parameters are sampled, A ∈ Rp×n

and h ∈ Rp define linear constraints on the contact wrenches,
and Mout is the stay-out zone. We average r over the np
perturbed grasps, as outlined in Algorithm 1.

C. Task-Based Grasping Web Interface

We build on Dex-Net as a Service (DNaaS) [8] to develop
a cloud-based public API for computing robust task-based
grasps with parallel-jaw grippers on user specified meshes.
The API takes as input an object specified as a 3D triangular

https://dex-net.app

No Task
specified Lift

Squeeze
Trigger Pack in Box Open

Nozzle
Open Bottle Place on

Shelf

Task Model

Grasps

Fig. 3: Task-directed grasping for spray bottle. The stay-out zones of the spray bottle object displayed on the second row model the
tasks described on the first row, resulting filtered grasps showed on the third row.

No Task
specified

Inspect top or
bottom surface

Hang on hook Turn in lock Polish key teeth

Task Model

r ∈ [0.0, 0.25)

r ∈ [0.25, 0.75]

r ∈ (0.75, 1.0]

Fig. 4: Standard door key with different task models and the resulting grasps. The same tool mesh for a key with different task
models produces different results in the grasp analysis. The labels on top row describe the task that the second row models. In the second
row, the purple region marks the stay-out zone, the blue arrow shows the direction of force, and the red arrow shows the torque. The
third row shows the sampled grasps with colors corresponding to the quality of grasps, and the next 3 rows show the same grasps split
into 3 groups based on quality scores.

mesh, and user specified task-based parameters defined by
graspable zone and external wrench and outputs a set of
collision-free parallel-jaw grasps filtered by graspable zones,
ranked by their robustness to perturbations in object pose,
gripper pose, the Coulomb friction coefficient and resistance
to the external wrench. The robust quasi-static grasp analysis
engine of the API assumes quasi-static physics, a rigid object
with uniform mass density, and a known friction coefficient.
We assume that the input mesh has triangular faces and fewer
than 70k total faces to ensure grasp computation latency
remains under two minutes.

In this user interface, shown in Figure 2, the object’s mesh
is shown in the center window along with a representation
of a parallel-jaw gripper for testing grasp analysis. In this
window, the user can hover over the mesh surface to mark
stay-out zones, and generate the grasp analysis to preview
the effect of the model.

The external wrench is further specified by clicking to
select the point of application, force settings and torque
settings. The force setting allows the user to indicate a
desired force by directly drawing a force vector on the 3D
mesh object. The torque settings allows the user to create a

Fig. 5: Task-directed grasping for wrench (left) mesh rep-
resentation on top and nominal grasps on bottom, (right) task
representation with stay-out zone and external torque for rotating
the wrench on top and resulting grasps on bottom. Note that the
grasps along the direction and farther from the torque application
point are preferred.

torque constraint on the object with specified rotation axis,
direction, and magnitude.

D. System Architecture

The back-end for task-directed grasp evaluation comprises
of three distinct layers of abstraction. The front-end of the
system is a web-based graphical user interface based on
jQuery that parses user mesh models and grasp computation
requests from a web browser. The frontend uploads mesh
models and makes requests for grasp computations via public
grasping API [8]. Requests are forwarded to the robust
grasp-analysis backend using a Python-based Flask API. The
backend spawns worker processes which analyze the input
mesh model using the robust grasp analysis engine. Each
worker process returns a set of parallel-jaw grasps with
robustness metrics. The grasps are retrieved from the worker
by a monitor process on the API server, which relays the
JSON encoded grasps to the frontend via HTTP. Finally, the
frontend renders the grasps on the 3D object model in the
browser.

The client-side user interface and server-side Flask API
run on a quad-core Intel(R) Xeon(R) CPU E3-1220 v3 with
a clockrate of 3.10GHz and 16GB of RAM. The website is
written using HTML, JavaScript, and CSS served statically
by an Apache web server. We use three.js to render
a 360◦ 3D scene in the browser where candidate grasps
are superimposed on the target object mesh. The page is
designed using a flexible box layout for easy accessibility
across modern web-browsers (Chrome, Safari, Firefox) and
on mobile devices. The website uses the latest version of
jQuery for DOM manipulation, event handling, and Promise-
based asynchronous HTTP requests. The graphical user
interface combines elements from jQuery UI, Bootstrap, and
custom CSS.

V. EXPERIMENTS

A. Effect of Stay-Out Zone on Grasp Filtering

Figure 3 shows a number of examples that can be routinely
performed with the spray bottle including lifting up, packing

Fig. 6: Effect of external wrench on task-directed grasping
Grasps along the direction of rotation and farther from the point of
rotation are preferred on (left) and (left-middle); grasps along the
direction of force and close to the point of application are preferred
on (right-middle) and (right).

Fig. 7: Multi-part assembly task. In this assembly, parts need to
be sequentially grasped and fit together.

into a box, nozzle opening, liquid re-filling, placing on shelf
and so on to capture the effect of stay-out zones on filtering
grasps.

B. Effect of External Wrench on Grasp Quality

We examine the effects of a task wrench with the spray
bottle in Figure 6. We make two observations: 1) grasps
along the direction of torque are preferred with farther grasps
providing a higher moment arm to resist the wrench, 2)
grasps along the direction of force are preferred with grasps
close to the point of application providing a better support
than farther away grasps.

C. Combined Effect of Stay-Out Zone and External Wrench

While the stay-out zones capture the form of the task, the
task wrench is useful to capture the functionality associated
with the task. In Figure 1 and Figure 5, we demonstrate
the combined effect of stay-out zone and external force and
torque respectively while restricting the grasps to lie within
semantic task-specific regions.

D. Household Task

Figure 4 demonstrates a set of common tasks that can
be performed with a key in household environments. Note
that grasps that align with the force direction are ranked as
robust grasps, but grasps that can not resist the task wrench

Object
Mesh

No task
specified

Assembly
Task

Task-Based
Grasps

Fig. 8: Assembly with different task models and the resulting
grasp analysis. Each row of this above figure show a single object
needed for the multi-part assembly task. The first column shows
the object mesh without the task-based grasp model. The second
column shows the grasp analysis without the task-based grasp
model. The third column shows the stay-out zones and wrenches
needed for the assembly. The fourth column shows the grasp-
analysis based on the model in the third column. With the task-
based model, the robot is able to compute grasps that facilitate
assembly.

Fig. 9: Task-based grasping set-up with the yumi robot: (left) task-directed
grasps on the pawn object (top) with stay-out zone, (right) pick-and-place
trajectory following task with the yumi robot on the pawn object. (left)
task-directed grasps on the mallet object (bottom) with torque constraints,
(right) hammering task snapshot on the mallet object.

are ranked as less robust. Moreover, the grasps that can rotate
the object in the specific direction are ranked as robust.

Figure 9 shows preliminary results of transferring the
grasps on the yumi robot, where the robot grasps the pawn
object from the top for following a pick-and-place task,
and the mallet for hammering task with external torque
constraints.

E. Assembly Task

Figure 7 shows a multi-part assembly and Figure 8 shows
the grasps generated by DNaaS-Task for 4 objects in the
assembly. The stay-out zones prevent the robot from inter-
fering with assembly contacts and the wrenches define the
assembly forces and torques, signifying its appeal to handle

Object Spray Bottle Tweezers Wrench Screwdriver key Overall
Number of faces 812 270 576 292 500 390
Average time(s) 7.41 6.74 7.73 7.03 7.25 7.232

Spray Bottle Lift Squeeze Trigger Pack in Box Place on Shelf Overall
Number of faces in stay-out zone 640 774 770 747 732
Average time(s) 6.91 3.3 4.09 6.80 5.25

Fig. 10: Computation time measurement. The top table provides
statistics for average computation time of five objects: a spray
bottle, a tweezers, a wrench, a screwdriver and a key. The bottom
table provides statistics for average computation time of spray bottle
under various task constrains.

a wide variety of task constraints.

F. Computation Times

The top table in Figure 10 shows grasp computation
times for 5 objects: spray bottle, a tweezers, a wrench, a
screwdriver and a key. Computation time grows with object
complexity (measured by the number of triangular faces in
a mesh).

The bottom table in Figure 10 shows grasp computation
time for a spray bottle under various task constrains pre-
sented in Figure 3 specifically represented by stay-out zone.
There is an inverse relationship between computation time
and the size of the stay-out zone (measured by the number
of stay-out zone faces in a mesh).

VI. CONCLUSIONS

In this paper we present an intuitive task-based grasping
interface and modification to the Dex-Net 1.0 grasp planning
algorithm to compute robust grasps consistent with task
constraints. The system computes robust task-based grasps
for a given specification of a stay-out zone and/or an external
wrench. To demonstrate the interface, analysis, and back-
end, we present experimental results for a variety of objects
and tasks in household and industrial environments. In future
work, we would like to extend DNaaS-Task to suction-based
and multi-finger grippers, and to multilateral manipulation
with two or more grippers.

ACKNOWLEDGEMENTS

This research was performed at the AUTOLAB at UC Berkeley in
affiliation with the Berkeley AI Research (BAIR) Lab, Berkeley Deep Drive
(BDD), the Swarm Lab, the Real-Time Intelligent Secure Execution (RISE)
Lab, and the CITRIS “People and Robots” (CPAR) Initiative. The work
was supported in part by donations from Siemens. The authors would like
to thank Pusong Li and Sophie Huang for their helpful contributions.

REFERENCES

[1] M. J. Aein, E. E. Aksoy, and F. Wörgötter, “Library of
actions: Implementing a generic robot execution framework
by using manipulation action semantics,” The International
Journal of Robotics Research, vol. 38, no. 8, pp. 910–934,
2019.

[2] R. Balasubramanian, L. Xu, P. D. Brook, J. R. Smith,
and Y. Matsuoka, “Physical human interactive guidance:
Identifying grasping principles from human-planned grasps,”
IEEE Transactions on Robotics, vol. 28, no. 4, pp. 899–910,
2012.

[3] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L.
Fei-Fei, and S. Savarese, “Learning task-oriented grasping
for tool manipulation from simulated self-supervision,” The
International Journal of Robotics Research, vol. 39, no. 2-3,
pp. 202–216, 2020.

[4] R. Haschke, J. J. Steil, I. Steuwer, and H. Ritter, “Task-
oriented quality measures for dextrous grasping,” in 2005
International Symposium on Computational Intelligence in
Robotics and Automation, 2005, pp. 689–694.

[5] R. Holladay, T. Lozano-Pérez, and A. Rodriguez, “Force-
and-motion constrained planning for tool use,” in 2019
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2019, pp. 7409–7416.

[6] M. Kokic, D. Kragic, and J. Bohg, “Learning task-oriented
grasping from human activity datasets,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 3352–3359, 2020.

[7] M. Kokic, J. A. Stork, J. A. Haustein, and D. Kragic,
“Affordance detection for task-specific grasping using deep
learning,” in 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids), Nov. 2017, pp. 91–98.

[8] P. Li, B. DeRose, J. Mahler, J. A. Ojea, A. K. Tanwani, and
K. Goldberg, “Dex-net as a service (dnaas): A cloud-based
robust robot grasp planning system,” in Proc. IEEE Conf. on
Automation Science and Engineering (CASE), IEEE, 2018,
pp. 1420–1427.

[9] Z. Li and S. S. Sastry, “Task-oriented optimal grasping by
multifingered robot hands,” IEEE Journal on Robotics and
Automation, vol. 4, no. 1, pp. 32–44, 1988.

[10] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey,
M. Aubry, K. Kohlhoff, T. Kröger, J. Kuffner, and K.
Goldberg, “Dex-net 1.0: A cloud-based network of 3d objects
for robust grasp planning using a multi-armed bandit model
with correlated rewards,” in Proc. IEEE Int. Conf. Robotics
and Automation (ICRA), IEEE, 2016.

[11] MakerBot Industries, LLC, Thingiverse - Digital Designs for
Physical Objects, https://www.thingiverse.com/, 2020.

[12] N. Mavrakis, M. Kopicki, R. Stolkin, A. Leonardis, et al.,
“Task-relevant grasp selection: A joint solution to plan-
ning grasps and manipulative motion trajectories,” in Proc.
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), IEEE, 2016, pp. 907–914.

[13] N. Mavrakis, R. Stolkin, L. Baronti, M. Kopicki, M.
Castellani, et al., “Analysis of the inertia and dynamics

of grasped objects, for choosing optimal grasps to enable
torque-efficient post-grasp manipulations,” in Int. Conf. on
Humanoid Robots (Humanoids), IEEE, 2016, pp. 171–178.

[14] V.-D. Nguyen, “Constructing force-closure grasps,” Int. Jour-
nal of Robotics Research (IJRR), vol. 7, no. 3, pp. 3–16,
1988.

[15] V. Ortenzi, M. Controzzi, F. Cini, J. Leitner, M. Bianchi,
M. A. Roa, and P. Corke, “Robotic manipulation and the
role of the task in the metric of success,” Nature Machine
Intelligence, vol. 1, no. 8, pp. 340–346, Aug. 2019.

[16] T. Pardi, R. Stolkin, et al., “Choosing grasps to enable
collision-free post-grasp manipulations,” in Int. Conf. on
Humanoid Robots (Humanoids), IEEE, 2018, pp. 299–305.

[17] A. ten Pas and R. P. Jr., “Localizing antipodal grasps in point
clouds,” CoRR, vol. abs/1501.03100, 2015. arXiv: 1501 .
03100.

[18] M. Prats, P. J. Sanz, and A. P. del Pobil, “Task-oriented
grasping using hand preshapes and task frames,” in Proceed-
ings 2007 IEEE International Conference on Robotics and
Automation, 2007, pp. 1794–1799.

[19] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese, Keto:
Learning keypoint representations for tool manipulation,
2019. arXiv: 1910.11977 [cs.RO].

[20] E. Rimon and J. Burdick, The Mechanics of Robot Grasping.
Cambridge University Press, 2019.

[21] D. Song, C. H. Ek, K. Huebner, and D. Kragic, “Task-based
robot grasp planning using probabilistic inference,” IEEE
Transactions on Robotics, vol. 31, no. 3, pp. 546–561, 2015.

[22] J. Xu, A. Bhardwaj, G. Sun, T. Aykut, N. Alt, M. Karimi,
and E. Steinbach, “Learning-based modular task-oriented
grasp stability assessment,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE,
2018, pp. 3468–3475.

[23] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang
Zhang, Xiaoou Tang, and J. Xiao, “3d shapenets: A deep
representation for volumetric shapes,” in 2015 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 1912–1920.

[24] S. Zimmermann, G. Hakimifard, M. Zamora, R. Poranne,
and S. Coros, “A multi-level optimization framework for
simultaneous grasping and motion planning,” IEEE Robotics
& Automation Letters, vol. 5, no. 2, pp. 2966–2972, 2020.

https://www.thingiverse.com/
https://arxiv.org/abs/1501.03100
https://arxiv.org/abs/1501.03100
https://arxiv.org/abs/1910.11977

	Introduction
	Related Work
	Task-Directed Grasping
	Learning Grasping Strategies

	Problem Formulation
	System Design Considerations

	Task-Based Grasping System
	Semantic Task-Based Grasp Model
	Task-Based Grasp Analysis Algorithm
	Task-Based Grasping Web Interface
	System Architecture

	Experiments
	Effect of Stay-Out Zone on Grasp Filtering
	Effect of External Wrench on Grasp Quality
	Combined Effect of Stay-Out Zone and External Wrench
	Household Task
	Assembly Task
	Computation Times

	Conclusions

